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CLASS GROUP FREQUENCIES 
OF REAL QUADRATIC FUNCTION FIELDS: 

THE DEGREE 4 CASE 

CHRISTIAN FRIESEN 

ABSTRACT. The distribution of ideal class groups of Fq(T, M(T)) is exam- 
ined for degree-four monic polynomials M E Fq[T] when Fq is a finite field of 
characteristic greater than 3 with q e [20000, 100000] or q e [1020000, 1100000] 
and M is irreducible or has an irreducible cubic factor. Particular attention 
is paid to the distribution of the p-Sylow part of the class group, and these 
results agree with those predicted using the Cohen-Lenstra heuristics to within 
about 1 part in 10000. An alternative set of conjectures specific to the cases 
under investigation is in even sharper agreement. 

1. INTRODUCTION 

There is no dearth of data when it comes to ideal class numbers or ideal class 
groups of quadratic number fields; we may turn to papers of Buell, Kuroda, Saito 
and Wada or Tennenhouse and Williams [3], [4], [11], [12], [16]. If, however, we 
ask for ideal class numbers of quadratic function fiQlds then we come away almost 
empty-handed, save for the rather small tables of Artin or Feng and Sun [2], [10]. 
There is, or so it would appear, a good reason for this. Namely, for any degree d 
and for any finite field Fq of q elements there are qd monic polynomials M(T) giving 
rise to (ostensibly different) quadratic fields Fq(T, M(T)). Determining the class 
group for each such quadratic field rapidly exhausts any available time resources 
for all but the smallest values of q and d. 

In the case where M is a monic irreducible of degree 4 (which is one of the cases of 
interest for this paper) we can reduce the number of class group calculations needed 
above down from q4 to about q/2. Even then, with q near 10000, the calculations 
become quite time-consuming. We can do better, though, and dispense with the 
calculation of the class group almost entirely by making use of results of Schoof [14], 
who built on previous work of Waterhouse [17] and Deuring [7]. Schoof provides 
formulae for counting the number of Fq-isomorphism classes of elliptic curves over 
Fq. Some results of Friesen [9], based on theorems of Stein [15] and Adams and 
Razar [1], relate class groups of some of these elliptic curves with the ideal class 
groups of certain Fq(T, %M(T)) with M of degree 4. Using this connection, we are 
able to determine the distribution of these ideal class groups. 
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Part of the interest in how these ideal class groups are distributed comes from 
testing the function field analogues of the Cohen-Lenstra conjectures [5] proposed 
by Friedman and Washington [8] and later modified slightly by Jiu-Kang Yu [18]. 
The original Cohen-Lenstra conjectures, for number fields, have plenty of empirical 
support. Such evidence is largely lacking in the function field setting, with Feng 
and Sun [10] providing some data for q < 11. In Yu's paper [18] he proves, subject 
to some conditions, that for a fixed degree the fraction of ideal class groups with a 
given p-Sylow group tends towards a limit as q increases. In section 4 of this paper 
we shall examine the distribution of the p-Sylow part of the ideal class groups in 
the degree 4 case. 

Motivation for looking at the sizes of class groups comes from the field of cryptog- 
raphy. In a recent paper Scheidler, Stein and Williams [13] discuss a key-exchange 
cryptosystem based on the continued fraction expansion of an irrational quadratic 
in a real quadratic function field IFq(T, M(T)). They singled out the case where 
M is of degree 4 as the one that performed best (in terms of empirically-measured 
speed and hypothesized security). The security of this cryptosystem relies in part 
on the likelihood of the ideal class group of IFq(T, M(T)) being small. With this 
in mind we also examine, in section 5, some data regarding the distribution of small 
ideal class groups. 

In this paper we shall concern ourselves with degree-four polynomials M e Fq [T] 
that are irreducible or factor as a linear times an irreducible cubic. These are 
precisely the cases where the ideal class number is odd. We shall examine the 
distribution of small ideal class groups of IFq(T, /(T)) (and the p-Sylow parts of 
these groups) for q in the intervals [20000,100000] and [1020000,1100000]. When 
we average our results in an appropriate manner we will find close agreement with 
the predictions obtained by applying the Cohen-Lenstra heuristics. An alternative 
set of predictions will also be considered. 

2. PRELIMINARIES 

We let Fq be the finite field of characteristic greater than 3 and having q elements, 
and use IFq* to denote the multiplicative group. Take M to be a degree 4 squarefree 
monic (leading coefficient = 1) in Fq [T], where T is an indeterminate. Adjoining 

;M() to IFq(T) provides us with a quadratic extension whose ring of integers is 
OM = lFq[T, M(T)]. Two ideals A and B of OM are equivalent if A = cB for 
some c e Fq(T, /(T)). The set of ideal classes under this equivalence forms a 
finite abelian group, called the ideal class group, which we will denote by Cl(Om), 
and whose order, hM, is called the ideal class number. For the sake of convenience 
we shall define Iq(n) as the set of monic irreducible polynomials of degree n in 
lFq [T]. For the purposes of this paper we shall restrict our attention to the two sets 
of quartics described by Iq(4) and Iq(1)Iq(3). 

If we fix a monic squarefree quartic M and choose any a E Fq, then we can 
create another monic squarefree quartic N(T)-A M(T + a), where Cl(OM) is triv- 
ially isomorphic to Cl(ON). Since the characteristic of Fq is odd, we may choose 
a e Fq such that the polynomial N(T) has no cubic term and, instead of consid- 
ering all quartics, we can restrict our attention to those with no cubic term in our 
examination of the distribution of class groups. 

From an earlier paper [9, Theorem 2.4] we quote the following theorem. 
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Theorem 2.1. Let Fq be the finite field with q elements and characteristic =, 2, 3. 
Then there is a 1-1 correspondence between irreducible monic quartics M E TFq[t] 
with no cubic term and pairs E,P of non-singular elliptic curves E: W2 = V3 + 

Av + B with a 2-rank of one and with P a point on E such that #E(Fq)/ ord(P) is 
odd. Under this correspondence the ideal class group Cl(OM) is isomorphic to the 
coset E(IFq)/(P). 

In particular, this reduces the problem from that of determining the distribution 
of the class groups associated to monic irreducible quartics to that of determining 
the distribution of certain elliptic curves with a 2-rank of one. 

For each legitimate isogeny class (keeping in mind that we require a 2-rank of one) 
we need to determine the number of elliptic curves of the form E: W2 = V3 +Av+B. 
We will modify results of Schoof [14] to count the number of Fq-isomorphism classes 
of elliptic curves with the elliptic group isomorphic to a fixed one. From this we 
easily determine the number of elliptic curves of the form E: W2 = V3 + Av + B 
with a 2-rank of one by calculating the number of such curves in any isomorphism 
class. To finish our computations we find all odd subgroups E(Fq)/(P) as P varies 
among points on E such that #E(Fq)/ ord(P) is odd. 

We define Cm to be the cyclic group of order m and modify the results of Schoof 
to obtain the following theorem. 

Theorem 2.2. Let p > 3 be the characteristic of the finite field Fq, where q = d 

Let bla be positive integers and define Nq(a, b) as be the number of isomorphism 
classes of elliptic curves over Fq with E(Fq) - Ca x Cb. Let t = q + 1 - ab, and let 
p() and Ho denote the Mdbius function and Kronecker class number, respectively. 
Then 

Z -( ) H (t 4) if t2 < 4q; p t t, 
b nn 

nlq-1 
n2lab 

H(-4p) if t = 0; d odd; b = 1; q 1 (mod 4), 

Nq(a, b) = H(-4p)-H(-p) if t = O; d odd; b = 1; q 3 (mod 4), 
H(-p) if t = O; d odd; b = 2; q 3 (mod 4), 

P + 1 _ 1 
3 4 ( 4 if t2= 4q; a = b, 

2 if t2= q; b = 1; p 2 (mod 3), 
2 if t = O; d even; b =1; p-3 (mod 4), 
0 in all other cases. 

Proof. The proof follows from Theorems (4.6), (4.8) and (4.9) in Schoof's paper [14]. 
There are only two points which may benefit from further explanation. First, even 
though Schoof does not deal with the situation where n is even in Theorem (4.9), 
that case follows from his other theorems as well. The second issue to address is 
that of the sum involving the M6bius function above. In [14, Theorem (4.9)] we see 
that H ((t2 - 4q)/n2) counts the number of isomorphism classes of elliptic curves E 
with E(Fq)[n] _ Cn x Cn when nlq -1 and n2Iq + 1- t. To obtain all elliptic curves 
with E(Fq) - Ca x Cb we count the number of curves with E(Fq)[b] - Cb X Cb and 
subtract an amount for all curves satisfying E(lFq)[n] _ Cn x Cn for all non-trivial 
positive integer multiples n of b. We must, of course, be wary of counting some 
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curves more than once, and the necessary inclusion-exclusion results in our use of 
the M6bius function above. O 

Our next step is to determine the number of elliptic curves of the form E: W2 = 

v3 + Av + B in each of our isomorphism classes. We begin by noting that, since the 
characteristic of Fq is neither 2 nor 3, every isomorphism class contains a curve of 
the form E: W2 = v3 + Av + B. All other such curves in that isomorphism class 
are related to this curve via 

w' = a3w, v' = a2v, A' = a4A, B' = a 6B 

for some a E Fq*. If A and B are both non-zero then we obtain exactly (q - 1)/2 
distinct pairs (A', B') as a E IFq* varies, and hence the isomorphism class contains 
exactly (q - 1)/2 curves in this instance. Since we require non-singular elliptic 
curves, it is not possible for both A and B to be 0. If A = 0, then for our curve to 
have a 2-rank of one it must follow that v3 + B has exactly one linear factor. This 
is the case if and only if q _ 2 (mod 3), which in turn implies that a 6B gives us 
(q- 1)/2 distinct values as a E Fq* varies. If B = 0 then there are either (q- 1)/4 or 
(q - 1)/2 distinct values of a4A as a E Fq* varies, depending on whether q 1 or 3 
(mod 4). We conclude that each isomorphism class has (q - 1)/2 elliptic curves of 
the desired form, with the exception (occurring when q 1 (mod 4)) of the two 
isomorphism classes that contain an elliptic curve of the form E: W2 = v3 + Av. 

Now that we have the number of elliptic curves satisfying our conditions, we can 
apply Theorem 2.1. It will be necessary to determine, for a given group G, the 
distribution of the subgroups of the form G/(a) as a varies. This is immediately 
obvious if G is cyclic. We state without proof a lemma that encompasses the case 
where G is of rank 2. 

Lemma 2.3. Let p be a prime. Fix integers r > s > 0 and let G _ Cpr X Cp9 

with generators ca and 3 of orders pr and pS, respectively. Fix integers u > v > 0 
and define Rp(r, s, u, v) as the number of a E G such that G/(a) is isomorphic to 
Cpu x Cpv. Let k = r + s-u-v. If k < 0, then Rp(r, s, u, v) = 0 except when 
r = u and s = v, in which case Rp(r, s, u, v) = 1. For the following situations where 
k > 1 we have 

q5(pk)q$(ps_v) if r > u > s > v, 
|5(pk)pS-V if r > u= s > v, 

Rp(r,s,u, v)= q(p k)(pk+ p k1) if r = u = s > v, 

|5(pk)pk if r = u > s > v, 

10 in all other cases, 

where q() denotes the Euler totient function. 

Proof. The proof is left to the reader. g 

Suppose we have finite abelian groups G and H. To determine the number of 
a E G such that G/(C) _ H we apply the abQve lemma for all primes p dividing 
the order of G and then multiply together all the values of Rp. 

FRom Theorem 2.2 we obtain the number of isomorphism classes of elliptic curves 
of given form. We have seen that almost all of these classes contain (q - 1)/2 elliptic 
curves. Applying Theorem 2.1 together with Lemma 2.3, we obtain a count for 
M E Iq (4) giving rise to an ideal class group of specified form. 
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If, instead of quartic irreducibles, we consider M E Iq(1)Iq(3) (that is to say, 
precisely those that will give rise to a Jacobian with an odd number of points), then 
there are the following differences. The elliptic curves of interest are the irreducible 
ones (to give us a 2-rank of zero). An argument similar to the one above shows 
that almost all isomorphism classes here contain (q - 1)/2 elliptic curves of the 
form E: W2 = V3 + Av + B. The 4 exceptions are the classes containing elliptic 
curves with A = 0, and these occur when q =1 (mod 3). Those exceptional classes 
contain (q - 1)/6 elliptic curves of the desired form. We are obliged to use a slightly 
different version of Theorem 2.1 (to be found in [9, Theorem 2.5]). We may then 
apply Theorem 2.2 and Lemma 2.3 to count all M E Iq(1)Iq(3) giving rise to an 
ideal class group of the specified form. 

3. ALGORITHM 

As noted in the previous section, to obtain exact values for the distribution of 
the ideal class groups we would need to determine the ideal class groups for two 
exceptional cases whenever q- 1 (mod 4) (if M E Iq(4)) or q =1 (mod 3) (if 
M E Iq(1)Iq(3)). Rather than perform these computations, which are increasingly 
time-consuming as q grows, we will content ourselves with the small degree of 
inaccuracy that ignoring these exceptions creates. This error, bounded in size by 
l/q when M E Iq(4), makes it convenient to focus only on q > 20000, ensuring an 
accuracy to within 5 x 10-5 for the smaller q and an error of less than 10-6 for 
q E [1020000, 1100000]. 

The first step in an efficient determination of the distribution of the ideal class 
groups is the creation of a table of the Kronecker class numbers necessary for the 
formulae of Theorem 2.2. To find H(A) for some negative discriminant A we count 
integer triplets (a, b, c) satisfying 

a>0, b2 - 4ac =A, lbl < a < c, b-> 0 whenever a = lbl or a = c. 

Rather than performing this count for every discriminant A, it is more practical 
to iterate over possible values of b, a and c and increment the item corresponding 
to b2 - 4ac in an array (whose elements represent H(A) for a range of A). This 
quick (15 minute) computation was performed once to determine all H(A) for 
A E [-4400000,0], and the resulting 4MB of data was then loaded into memory 
as needed, sufficing for all calculations with q < 1100000. We note that if we are 
examining, the frequency of occurrence of an ideal class group (or p-Sylow subgroup) 
of rank 2, say Ca x Cb with alb, then from Theorem 2.2 we see that the largest 
discriminant we use is bounded by -4q/b2 This means that we may extend our 
range for q up to 1 100000b2, and we shall do so later on to obtain greater accuracy 
for rank 2 observations. 

The next step is, for every q and every group (or p-Sylow subgroup, as desired), 
to cycle through all possible integral values of t E [-2V/-, 2V/q] that could result in 
an ideal class group (or p-Sylow subgroup, respectively) of the desired form. For 
M E Iq(4) this means t is even; for M E Iq(1)Iq(3) this means t is odd. In either 
case q + 1 - t needs to be divisible by the order of the desired group (or p-Sylow 
subgroup). Write q + 1 - t as 2mn with n odd. Then, for all combinations of 
positive integers a, b with bla and ab = n we determine Nq(2ma, b) from Theorem 
2.2. Finally we use Lemma 2.3 to determine the number of a E Ca x Cb such that 
(Ca x Cb)/(a) is of the desired form. 
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In the Iq(4) case the total count is divided by the number of quartics in Iq(4) 
and then, if q -1 (mod 4), is multiplied by an additional factor of q/(q + 1) to 
correct for our overcount of the exceptional cases. In the Iq(1)Iq(3) case the total 
is divided by the number of quartics in Iq(1)Iq(3) and then, if q _ 1 (mod 3), is 
multiplied by an additional factor of (q + 1)/(q + 5). 

4. DISTRIBUTION OF p-SYLOW SUBGROUPS OF IDEAL CLASS GROUPS 

It may be naive to expect that the p-Sylow subgroups of ideal class groups, for the 
very limited case where we are dealing with irreducible quartics (or those quartics 
with exactly one linear factor), should have a distribution governed by the Cohen- 
Lenstra heuristics. At first glance, in fact, we note that we must treat separately 
the case where plq - 1 in order to obtain any kind of limit at all (see Figure 4.1 
for a graph of the frequency of C3 as a 3-Sylow subgroup), and even then neither 
limit agrees with the heuristic prediction. However, on averaging the cases where 
plq - 1 and p j q - 1 (weighted appropriately, of course) we see an agreement with 
the heuristics to a very high degree of precision (Table 4.2). With few exceptions, 
to be discussed later, the differences between the observed and predicted averages 
(for q ,- 106) are on the order of 10-6. The need to average results to obtain 
heuristically predicted values is not new to this situation - Cohen and Martinet [6] 
noted that for pure cubic number fields one obtains the predicted value (to within 
a few parts per thousand) for the probability that the class number is 1 only if one 
appropriately averages the rather different 'limits' arrived at for q _-1 (mod 9) 
with those for q _ 2, 5 (mod 9). 

It should be noted that the p-rank of our class groups is at most 2 (Theorem 
2.2), and this requires that we modify the numbers of the Cohen-Lenstra heuristics 
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FIGURE 4.1. A point (q, f(q)) represents a value of q in 
[10000, 100000] or [1020000, 1100000] together with the observed 
proportion, f (q), of M E Iq(4) whose 3-Sylow subgroup of Cl(O9M) 
is isomorphic to C3. The upper and lower 'lines' correspond to 
q 0 1 (mod 3) and q _ 1 (mod 3), respectively. 
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TABLE 4.2. Columns 2 through 5 represent the average over 
all q E [20000,100000] (unless starred*, in which case q E 
[1020000,1100000]) of the observed proportion of M Iq (4) 
and M E Iq(1)Iq(3) whose p-Sylow subgroup of Cl(OM) is iso- 
morphic to Gp. CL(Gp) refers to the prediction via Cohen- 
Lenstra heuristics, and P(Gp) is the prediction using CONJ 1 and 
CONJ 2 via the appropriately averaged values of P(Gp, k) as below: 
P(G 0 ) (p-2)P(GP,0)+P(GP,) and P(Gp = Cpm X Op) 
(p-1)P(GpJl)+P(Gp,2) 

p(p- 1) 

Gp Iq (4) Iq (l)Iq (3) Iq (4)* Iq(1)Iq(3)* CL(Gp) P(Gp) 
C3 .139916 .139920 .139918 .139918 .140032 .139918 

C3 x C3 .001981 .001982 .001981 .001982 .001945 .001981 
C5 .047520 .047516 .047520 .047520 .047521 .047520 

C5 x C5 .000079 .000079 .000079 .000079 .000079 .000079 
C7 .023243 .023243 .023244 .023245 .023244 .023244 

C7 X C7 .000010 .000010 .000010 .000010 .000010 .000010 
C9 .015546 .015545 .015546 .015547 .015559 .015546 

Cg x C3 .000294 .000294 .000294 .000294 .000288 .000294 
C 1 .009008 .009007 .009008 .009008 .009008 .009008 
C13 .006369 .006368 .006369 .006369 .006369 .006369 
C17 .003663 .003662 .003663 .003663 .003663 .003663 
C19 .002915 .002915 .002915 .002915 .002915 .002915 
C23 .001972 .001972 .001972 .001972 .001972 .001972 
C25 .001901 .001900 .001901 .001901 .001901 .001901 
C27 .001727 .001727 .001727 .001727 .001729 .001727 
C29 .001230 .001229 .001230 .001230 .001230 .001230 
C31 .001074 .001073 .001074 .001074 .001074 .001074 
C37 .000750 .000750 .000750 .000750 .000750 .000750 
C41 .000609 .000609 .000609 .000609 .000609 .000609 
C43 .000553 .000553 .000553 .000553 .000553 .000553 
C47 .000462 .000462 .000462 .000462 .000462 .000462 
C49 .000475 .000474 .000475 .000474 .000474 .000474 

even as we accept a key premise, namely that a p-Sylow subgroup G (in the real 
quadratic case) occurs with a frequency inversely proportional to #G# Aut(G). 

Let us define 

= ~~~~1 
G #Gp#Aut(Gp) 

where the sum is over all finite p-Sylow groups Gp (including the trivial one) that 
have p-rank at most 2. A straightforward calculation determines that 

8 - 7 - 6 + 5 +'4 -P 
- 

p8 -p7 -p +p5 +p4 -p2 +1 
- (p+1)2(p-j)4(p2+p+j) 

The expected fraction of ideal class groups with a p-Sylow subgroup isomorphic 

to a given one, G is GAut(G) and these quantities are displayed in 
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the tables as CL (Cohen-Lenstra) predictions. In the function field case these 
expectations are frequently couched in terms requiring the degree to increase as 
q stays fixed. We, however, will be fixing the degree (equal to 4) and letting q 
increase. 

When Yu [18] discusses the distribution of p-Sylow subgroups of class groups 
he requires that q # 1 (mod p) and under that condition proves a general theorem 
that guarantees, as a particular case, that there is a limit as q -* oo of the frequency 
of occurence of any fixed p-Sylow subgroup arising from the ideal class groups of 
quartics in Fq[T]. In our computations we must restrict ourselves to the limited 
set of those squarefree quartics that have odd class numbers, but we should not, in 
light of Yu's theorem, find it too surprising that even with our restriction we still 
observe a limit on the frequencies of the p-Sylow subgroups in this case. We observe 
limits for cyclic p-Sylow subgroups, albeit different ones for plq - 1 and p t q - 1. 
When Gp = Cpm x Cpfl with m > n > 1, we can see a further refinement in the 
averages depending on whether pnlq - 1 or pn+l q - 1. All of these empirically 
observed 'limits' seem quite sharp (see Figure 4.1 and Tables 4.2 and 4.3). 

We determine the average for cyclic p-Sylow subgroups not by averaging over all 

q but rather via the formula D1 + (P 
- 

2)Do where Dr and Do are the frequencies 
- 1 whr 1adD r h rqece 

observed when plq - 1 and p t q - 1, respectively. This minimizes difficulties that 
can arise from a choice of interval in which the ratio of q with plq - 1 to those with 
p t q - 1 is different from the theoretical 1: p - 2. A similar calculation is invoked 
for the rank 2 p-Sylow subgroups. 

The empirically observed values are in close agreement (when averaged over all 
values of q and not just those satisfying q # 1 (mod p)) to the values predicted 
by using the Cohen-Lenstra heuristics. The one feature of the data that suggests 
that this may not be, in fact, exactly correct is that the computational results are 
consistently lower than predicted when 3 divides the order of the group. As an 
example we can look at the frequency of occurrence of the 3-Sylow subgroup C3, 
which averages to 1.39918.10-1 for large q versus the expected value of 1.40032. 10-1 
(see Table 4.2). This is, admittedly, a small difference. Further computations might 
bring the results closer to expectations (although the sharpness of the limits and 
the decreasing relative standard deviations shown in Table 4.5 undermine that 
possibility). It should be noted, however, that the CL (Cohen-Lenstra) predictions 
are most out of line with the computations precisely when 31#G, and this suggests 
that there may be another factor at work here that diminishes quickly as p increases. 
With this in mind, and with only the empirical evidence to justify the formulae 
appearing below, let us consider the following model. 

Since we observe no significant distinction between the probabilities for the cases 
Iq(4) and Iq(1)Iq(3), we will state our assumptions for the irreducibles, Iq(4), but 
expect no difference if we were to include the other set of quartics as well. We beg 
the reader's indulgence in our use of Cm x C, to denote the group Cm - it simplifies 
the presentation of the following conjectures and is used in several ensuing formulae. 

Conjectured model. For any odd prime p, arty finite abelian p-Sylow group Gp 
with rank at most 2, and any integer k > 0 we define 

P(GP, k) 1. #{ M E Jq(4): Cl(Fq(T MW(T))) 0 Zp 
- 

Gp} 
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TABLE 4.3. Columns 2,3,5 and 6 represent the observed average, 
over all q E [1020000,1100000] separated according to whether 
pIq -1 or not, of the proportion of M E Iq(4) (or M E Iq(1)Iq(3) if 
starred*) whose p-Sylow subgroup of Cl (OM) is isomorphic to GP. 
Columns 4 and 7 represent predictions as per CONJ 1. 

GP P tq- 1 P tq-1* P(GP, ?) plq -1 plq -1* P(GP, 1) 
C3 .148148 .148148 .148148 .131688 .131687 .131687 
C5 .048000 .048000 .048000 .046080 .046080 .046080 
C7 .023323 .023324 .023324 .022848 .022848 .022848 
C9 .016461 .016461 .016461 .014632 .014632 .014632 
C 1l .009016 .009015 .009016 .008941 .008941 .008941 
C13 .006372 .006372 .006372 .006336 .006334 .006335 
C17 .003664 .003664 .003664 .003652 .003651 .003651 
C19 .002916 .002916 .002916 .002909 .002907 .002908 
C23 .001973 .001972 .001973 .001968 .001969 .001969 
C25 .001920 .001920 .001920 .001843 .001843 .001843 
C27 .001829 .001829 .001829 .001626 .001626 .001626 
C29 .001230 .001230 .001230 .001230 .001228 .001229 
C31 .001074 .001074 .001074 .001073 .001073 .001073 
C37 .000750 .000750 .000750 .000750 .000750 .000750 
C41 .000609 .000609 .000609 .000608 .000610 .000609 
C43 .000554 .000553 .000553 .000553 .000553 .000553 
C47 .000462 .000462 .000462 .000462 .000464 .000462 
C49 .000476 .000476 .000476 .000466 .000466 .000466 

We know, from reading Theorem 2.2, that for any m > n > 1, P(Cpm x Cpn X k) = 0 
if k < n. The data suggest that the limits above exist and that, for all m > n > 0 
and k > n, they satisfy the following conjectured formulae: 

(CONJ 1) P(Cpm x Cp0,k) - (p+ 1)(p2 - 6kn) 
p2m+3n+3 

4 
P4_ 2 _P +6km (CONJ 2) P(Cpm x Cpm, k) = p5m+2(p2+) 

where 6xy = 1 if x > y and 0 otherwise. 

Using these two conjectures, one may show that, for fixed k and for q satisfying 

pk-Iq- 1, the expected probability that p divides the class number is conjecturally 

p2 +P - 6kO 

p4 - p2 

Except for the unexpected cancellation, when k > 0, of various terms depending on 
k, the straightforward derivation of the above formula is of little interest and will 
be omitted. 

These two conjectures (exhibited under the P columns in Tables 4.2-4.4) corre- 
spond quite well with the empirical observations found by averaging the frequencies 
of all p-Sylow subgroups of order less than 50 for all M E 14(q) for all q (q a power 
of a prime greater than 3) in the ranges [20000,100000] and [1020000,1100000]. 
With the larger range for q we observe a difference of at most 10-6, and that only 
rarely, in Tables 4.2 and 4.3 between the empirical results and the predictions based 
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TABLE 4.4. Columns 2 and 4 represent the observed average, over 
all q E [8000000,8000000+100000pl] satisfying pf l q-1, separated 
according to whether pn+l q - 1 or not, of the proportion of M E 
Iq(4) whose p-Sylow subgroup of Cl(OM) is isomorphic to Cpm X 

Cpfl. Columns 3 and 5 represent predictions as per CONJ 1 and 
CONJ 2. 

Cp- X Cp- p'llq-1 P(Gp n) pn+llq-1 P(G, n + 1) 
C3 X C3 .0039437 .0039438 .0040009 .0040009 
C5 X C5 .0003173 .0003173 .0003179 .0003179 
C7 X C7 .0000593 .0000593 .0000593 .0000594 
C9 X C3 .0006097 .0006097 .0005419 .0005419 
C9 x C9 .0000162 .0000162 .0000165 .0000165 

Cl x Cil .0000062 .0000062 .0000062 .0000062 
C13 x C13 .0000027 .0000027 .0000027 .0000027 
C17 x C17 .0000007 .0000007 .0000007 .0000007 
C19 x C19 .0000004 .0000004 .0000004 .0000004 
C25 X C5 .0000154 .0000154 .0000147 .0000148 
C27 X C3 .0000677 .0000677 .0000602 .0000602 
C27 x C9 .0000025 .0000025 .0000022 .0000022 
C49 X C7 .0000014 .0000014 .0000014 .0000014 
C81 X C3 .0000075 .0000075 .0000067 .0000067 

on CONJ 1 and CONJ 2. In Table 4.4, where we examine the rank 2 p-Sylow sub- 
groups, our values for q are close to 107 and we see that the discrepancy between 
our predictions and the data are only occasionally as large as 10-7. In these tables 
CONJ 1 and CONJ 2 match the data to within the computational error discussed 
in Section 3. The great weakness of these conjectured formulae is that, whereas the 
Cohen-Lenstra predictions are backed by some very sensible heuristics, the above 
conjectures lack any kind of compelling theoretical reason to accept them. We shall, 
however, give them a second look when discussing the distribution of the ideal class 
groups (not just p-Sylow parts) in the next section. 

If we look at the expected average of the frequency of occurrence of Cpn according 
to CONJ 1, we arrive at 

(p + 1)(p3 _ p2 _ 1) 1 

p4 #Gp# Aut(Gp) 
whereas CL would predict 

(p + 1)2(p-1)4(p2 + p + 1) 1 

p8 - p 7_ p6+ p5 + p4 - p2 + 1 #Gp# Aut(Gp)' 

These two predictions differ by a factor of about 1 + p-7, an amount that, as p 
grows, quickly becomes insignificant. Only when p = 3, in fact, is the difference 
large enough (see Table 4.2) to exceed the computational error remarked on in 
section 3. 

The same holds true for rank 2 p-Sylow subgroups, where, using the conjectures 
above, we arrive at an average value of 

(p2- 1)(p3- 1) 1 

p5 #Gp# Aut(Gp) 
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TABLE 4.5. Relative standard deviations, as q varies among the 
cases listed below, for the observed proportions of M E Iq(4) whose 
p-Sylow subgroup of Cl(OM) is isomorphic to Gp. 
(*1) q E [20000,30000] with ordp(q - 1) = n 
(*2) q E [20000,30000] with ordp(q - 1) > n 
(*3) q E [90000,100000] with ordp(q - 1) = n 
(*4) q E [90000,100000] with ordp(q - 1) > n 
(*5) q E [1020000,1030000] with ordp(q - 1) = n 
(*6) q E [1020000,1030000] with ordp(q - 1) > n. 
Note: If Gp = Cpm then we take n to be 0. 

Cpm X Cpn (*1) (*2) (*3) (*4) (*5) (*6) 
C3 .001 .002 .0006 .001 .0002 .0004 

C3 X C3 .009 .01 .004 .005 .001 .002 
C5 .007 .005 .003 .002 .001 .0007 

C5 X C5 .04 .04 .02 .02 .005 .005 
C7 .008 .01 .004 .006 .001 .002 

C7 X C7 .07 .06 .04 .04 .01 .01 
C9 .01 .01 .005 .005 .002 .001 

C9 X C3 .03 .04 .02 .02 .005 .006 
Cl 1 .02 .02 .008 .009 .002 .003 
C13 .02 .03 .009 .01 .003 .004 
C17 .03 .03 .01 .02 .004 .005 
C19 .03 .04 .02 .02 .004 .005 
C23 .04 .06 .02 .02 .006 .006 
C25 .04 .04 .02 .02 .006 .006 
C27 .04 .04 .02 .02 .006 .006 
C29 .05 .07 .02 .03 .007 .008 
C31 .05 .08 .03 .04 .008 .009 
C37 .06 .06 .03 .05 .01 .01 
C41 .07 .09 .03 .04 .01 .01 
C43 .07 .09 .04 .05 .01 .02 
C47 .08 .1 .04 .05 .01 .02 
C49 .08 .1 .04 .05 .01 .01 

which differs from the prediction via CL by a factor of about 1 + p-4. Here the 
difference is more pronounced, but since rank 2 groups are significantly less frequent 
it is, once again, only for p = 3 that we are able to see clearly the difference (Table 
4.2) between these two predictions. 

5. DISTRIBUTION OF IDEAL CLASS GROUPS 

Another point of comparision between the Cohen-Lenstra heuristics and our 
model is in the prediction of the frequency of class groups (and not just their p- 
Sylow subgroups), in particular the frequency of hM = 1. Both the data and our 
conjectures bear out the need to average over lots of values of q, as we expect a 
higher proportion of class number 1 groups occurring when q - 1 is divisible by 
small primes. In Figure 5.1, for example, we initially see an upper and a lower bar, 
corresponding to q _ 1 (mod 3) and q 0 1 (mod 3), respectively. Each of these 
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FIGURE 5.1. A point (q, f(q)) represents a value of q in 
[10000, 100000] or [1020000, 1100000] together with the observed 
proportion, f (q), of M E Iq(4) with hM = 1. The upper and lower 
'halves' correspond to q 1 (mod 3) and q # 1 (mod 3), respec- 
tively, with further splitting depending on whether 5 divides q - 1, 
whether 7 divides q - 1, and so forth. 

then splits into two bars, corresponding to q _ 1 (mod 5) and q # 1 (mod 5). With 
q sufficiently large we would expect to observe differences modulo 7 and 11 and so 
forth. 

When we average the data we once again arrive at a result in close parallel with 
CL. In particular, if we determine the proportion of trivial class groups via CL we 
arrive at the product 

W4 .754462, 
odd p 

compared to the empirically observed value of .754542. Note that our CL- 
predicted value of .754462 is slightly higher than the one usually quoted (at about 
.754458), due to the absence of groups with p-rank greater than 2. 

In addition to the two conjectures of the previous section we need one more in 
order to make predictions regarding ideal class groups (and not just their p-Sylow 
subgroups). It is the same as the assumption built into the Cohen-Lenstra heuris- 
tics regarding the independence of the p-Sylow subgroup occurrences, but more 
awkward to state in our case because the probabilities depend on the factorization 
of q - 1. We define, for any group G and any q a power of a prime greater than 3, 

Pq(G) = JJ P(G?7ip ,ordp(q-1)), 
odd prirnes p 
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TABLE 5.2. Columns 2 through 5 represent the average over 
all q E [20000,100000] (unless starred*, in which case q E 
[1020000,1100000]) of the observed proportion of M E Iq(4) and 
M C Iq(1)Iq(3) with Cl(OM) isomorphic to G. When G is itself 
a p-Sylow group, then the values in columns 2-5 were obtained 
by taking ((p - 2) * D( + Dl)/(p - 1), where D( and D1 are the 
observed averages over p t q - 1 and plq - 1 respectively. 

G Iq (4) Iq (l )Iq (3) Iq (4) * Iq(l )Iq(3)* CL(G) P(G) 
C0 .754564 .754570 .754541 .754542 .754462 .754540 
C3 .125641 .125648 .125641 .125642 .125744 .125641 

C3 x C3 .001779 .001780 .001779 .001779 .001746 .001779 
C5 .037728 .037728 .037726 .037726 .037723 .037726 

C5 x C5 .000063 .000063 .000063 .000063 .000063 .000063 
C7 .017966 .017966 .017965 .017965 .017963 .017965 

C7 X C7 .000008 .000008 .000008 .000008 .000008 .000008 
C9 .013960 .013960 .013960 .013960 .013972 .013960 

C9 x C3 .000264 .000264 .000264 .000264 .000259 .000264 
C11 .006859 .006860 .006860 .006859 .006859 .006860 
C13 .004837 .004837 .004837 .004837 .004836 .004837 
C15 .006281 .006281 .006282 .006282 .006287 .006282 

C15 X C3 .000089 .000089 .000089 .000089 .000087 .000089 
C17 .002774 .002774 .002774 .002774 .002774 .002774 
C19 .002207 .002207 .002206 .002206 .002206 .002206 
C21 .002991 .002991 .002991 .002991 .002994 .002992 
C23 .001491 .001491 .001491 .001491 .001491 .001491 
C25 .001509 .001509 .001509 .001509 .001509 .001509 
C27 .001551 .001551 .001551 .001551 .001552 .001551 
C29 .000930 .000929 .000929 .000929 .000929 .000929 
C31 .000812 .000811 .000811 .000811 .000811 .000811 
C33 .001142 .001142 .001142 .001142 .001143 .001142 
C35 .000898 .000898 .000898 .000898 .000898 .000898 
C37 .000567 .000567 .000567 .000566 .000566 .000567 
C39 .000805 .000805 .000805 .000805 .000806 .000805 
C41 .000460 .000460 .000460 .000460 .000460 .000460 
C43 .000418 .000418 .000418 .000418 .000418 .000418 
C45 .000698 .000698 .000698 .000698 .000699 .000698 
C47 .000349 .000349 .000349 .000349 .000349 .000349 
C49 .000367 .000367 .000367 .000367 .000367 .000367 

and state our final conjecture: 

(CONJ 3) lim (Pq(G) - #(M E I4(q)): cl(F2T, 
V ) _ G}I) q-4~o 004 q 

We should indicate at the outset that, for individual values of q, the differences 
observed in the limit above are large enough to raise serious doubts as to the validity 
of our conjecture(s). On the other hand, if we average over q in a congruence class 
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TABLE 5.3. Observed frequencies and prediction errors for 
Cl(OM) = G for M E Iq(4) with q E [1020000, 1100000] as av- 
eraged over the stated congruence classes. EG(plq - 1) is the 
difference between the predicted value (using CONJ 1,2,3) and 
the observed value of the average over all q E [1020000,1100000] 
satisfying q =1 (mod p) of the proportion of M E Iq(4) with 
Cl(OM) = G. EG (P t q - 1) is defined similarly. 

G 31q-1 eG(31q-1) 3{q-1 eG(3{q-1) 51q-1 eG(51q-1) 5fq-1 FG(5{q-l) 

C1 .760775 .000001 .748306 -.000002 .755510 .000023 .754216 -.000006 
C3 .118251 0 .133032 0 .125833 -.000026 .125577 .000009 
C5 .038037 .000001 .037412 .000003 .036582 .000001 .038108 0 
C7 .018112 .000001 .017815 .000002 .017987 .000002 .017956 .000001 
C9 .013139 0 .014781 0 .013981 -.000003 .013953 .000001 
C1 .006917 -.000001 .006803 0 .006869 0 .006857 0 
C13 .004877 0 .004797 0 .004843 0 .004835 0 
C15 .005913 -.000001 .006651 0 .006093 -.000002 .006345 0 
C17 .002797 0 .002751 0 .002778 0 .002773 0 
C19 .002224 0 .002188 0 .002209 0 .002205 0 
C21 .002815 0 .003167 0 .002996 0 .002990 0 
C23 .001504 0 .001479 0 .001493 0 .001491 0 
C25 .001522 0 .001497 0 .001463 0 .001524 0 
C27 .001460 0 .001642 0 .001553 0 .001550 0 
C29 .000937 0 .000922 0 .000930 0 .000929 0 
C31 .000818 0 .000805 0 .000812 0 .000811 0 
C33 .001075 0 .001209 0 .001144 0 .001142 0 
C35 .000906 0 .000891 0 .000871 0 .000907 0 
C37 .000571 0 .000562 0 .000567 0 .000566 0 
C39 .000758 0 .000853 0 .000806 0 .000805 0 
C41 .000464 0 .000456 0 .000461 0 .000460 0 
C43 .000421 0 .000414 0 .000418 0 .000418 0 
C45 .000657 0 .000739 0 .000677 0 .000705 0 
C47 .000352 0 .000346 0 .000350 0 .000349 0 
C49 .000370 0 .000364 0 .000367 0 .000367 0 

we will see the same kind of strong correlation with experimental data (Tables 5.2 
and 5.3) that characterized the p-Sylow predictions of the previous section. 

For example, if we combine the three conjectures to predict the average propor- 
tion of trivial class groups (with no restrictions on q), we come up with 

-jp5-_p4 -2p 3+ p 2+p+lI 
5 -S 4 -a 

_3 + p2 
754540) 

odd p p p p 

which agrees almost exactly with the empirical result. In Table 5.2, where we 
average over all q E [1020000,1100000], the greatest difference between the data 
and the predictions via CONJ 1,2,3 is 2. 10-6, whereas the greatest difference 
between the data and the CL predictions is about 50 times as great. It is not 
overly difficult to take the three conjectures and arrive at formulae for the expected 
frequency of various groups as q ranges over some congruence classes with respect 
to some modulus. As an example we provide, without further comment, the two 
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cases below: Let 

W5 - P5 -4-2p3 + p2 + p + 

oddp p -p+p 

Then, if CONJ 1, CONJ 2 and CONJ 3 are true we have, for distinct odd primes 
p and r, 

p5 -p4 -2p3 + p2 + 2p - 1 
P(h = I: q 1 (mod p))= p5 4 23+2++IW 

P(h=r:q l (modp)) 

_ p5-p4-2p3 +p2 +p r6-2r4-r3 + r +1 
p5-p4-2p3 + p2 + p + I r8 - r7-2r6 + r5 + r4 + r3 

where the above probabilities are understood to be averages over all allowable q. 
Table 5.3, which shows the details when we average over q belonging to various 
congruence classes, shows the efficacy of our conjectures in predicting these results. 
The greatest discrepancy here is about 3 10-5, and the difference is typically very 
much smaller. 

It should be remarked that the range of the larger q values was chosen 
to be [1020000,1100000] in part because that interval had an equal number of 
q -1 (mod 3) and q # 1 (mod 3). The averages of ideal class group frequencies 
are less in need of correction as a result. If we had chosen a range such as, for 
example, [950000,1000000] (this was, in fact, the author's first choice) then there 
would have been about 2.5% more q 1_ (mod 3) than q * 1 (mod 3). This would 
have reduced the average frequency of all class groups divisible by 3 and would have 
led to an artificially increased value for the average of all class groups not divisible 
by 3. Although it would be possible to compensate for this effect, it was deemed 
simpler to remove the problem - at least as far as the most influential prime was 
concerned - with a more 'balanced' choice of interval. 

6. CONCLUSION 

The data, once suitably averaged, are in very close agreement with the val- 
ues predicted by naively applying the Cohen-Lenstra heuristics, and match those 
heuristic predictions, to the best of the author's knowledge, to a higher degree of 
precision than any data previously published. In spite of this correlation, the slight 
differences that arise when 3 divides the class group suggest that the Cohen-Lenstra 
heuristics will not provide us with the exact values of the limits in the case under 
study here. An alternative set of conjectures suggested by the data, but without 
any heuristic underpinnings, comes startlingly close to recreating the experimental 
observations and allows us to estimate not only the averages (to a higher degree of 
precision than CL) but also the finer detail (when pklq - 1) that we witness in the 
computed results. 
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